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Abstract: In this paper, Laplace decomposition method is developed to solve linear and nonlinear fractional integro-
differential equations. The proposed method is based on the application of Laplace transform to nonlinear frac-
tional integro-differential equation. The nonlinear term can easily be handled with the help of Adomian polyno-
mials. The fractional derivative is described in the Caputo sense. The Laplace decomposition method is found to
be fast and accurate. Illustrative examples are included to demonstrate the validity and applicability of presented
technique and comparison is made with exacting results.
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1 Introduction
In this paper, we study the Laplace decomposition
method for a special kind of nonlinear fractional
integro-differential equation

Dαy(t) = p(t)y(t) + g(t) + λ

∫ t

0
k(t, τ)F (y(τ))dτ

(1)
and

Dαy(t) = p(t)y(t) + g(t) + λ

∫ 1

0
k(t, τ)F (y(τ))dτ

(2)
for t ∈ [0, 1], with the initial conditions

y(i) = δi, i = 0, 1, 2, · · · , n−1, n−1 < α ≤ n, n ∈ N,

where g ∈ L2([0, 1]), p ∈ L2([0, 1]), k ∈ L2([0, 1]2)
are known functions, y(t) is the unknown function,
Dα is the Caputo fractional differential operator of or-
der α.

Such equations arise in the mathematical model-
ing of various physical phenomena, such as heat con-
duction in materials with memory. Moreover, these
equations are encountered in combined conduction,
convection and radiation problems [1, 2].

In recent years, the analytic results on exis-
tence and uniqueness of problems solutions to frac-
tional differential equations have been investigated by
many authors [3, 4]. Momani [5] has obtained local
and global existence and uniqueness solution of the

integro-differential equation. Most of nonlinear frac-
tional integro-differential equations do not have ex-
act analytic solution, so approximation and numeri-
cal technique must be used. There are only a few
of techniques for the solution of fractional integro-
differential equations, since it is relatively a new sub-
ject in mathematics.

Recently, several numerical methods to solve
fractional differential equations and fractional
integro-differential equations have been given.
Nawaz [6] employed variational iteration method to
solve the problem. Seyed Alizadeh and Domairry
[7] presented the homotopy perturbation method for
solving integro-differential equations. Also, Momani
[8] and Qaralleh [9] applied Adomian polynomials
to solve fractional integro-differential equations and
systems of fractional integro-differential equations.
Zhang and Tang [10] presented homotopy analysis
method for higher-order fractional integro-differential
equations. Yang [11] applied the hybrid of block-
pulse function and Chebyshev polynomials to solve
nonlinear Fredholm fractional integro-differential
equations. In addition, the applications of collocation
method [12, 13, 14], wavelet method [15, 16, 17] and
spectral method [18, 19] for solution of fractional
integro-differential equations.

The Laplace decomposition method is a numeri-
cal algorithm to solve nonlinear ordinary, partial dif-
ferential equations. Khuri [20] used this method for
the approximate solution of a class of nonlinear ordi-
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nary differential equations. The numerical technique
basically illustrates how the Laplace transform can be
used to approximate the solution of the nonlinear dif-
ferential by manipulating the decomposition method
which was first introduced by Adomian. In 2006,
Agadjanov [21] developed this method for solution of
Diffing equation. The Laplace decomposition method
was proved to be compatible with the versatile na-
ture of the physical problems and was applied to a
wide class of functional equations [22, 23, 24, 25]. To
the best of authors knowledge no attempt have been
made to exploit this method to solve nonlinear frac-
tional integro-differential equation. Our aim in this
paper is to apply this technique to fractional integro-
differential equation.

Here we will investigate the construction of the
Padé approximate for the functions studied. The main
advantage of Padé approximation over Taylor series
approximation is that the Taylor series approxima-
tion can exhibit oscillations which may produce an
approximation error bound. Moreover, Taylor series
approximations can never blow up in a finite region.
To overcome these demerits we use the Padé approxi-
mate.

The Padé approximate is the ratio of two polyno-
mials constructed from the coefficients of the Taylor
series expansion of a function. The [L/M ] Padé ap-
proximate to a formal power series y(t) =

∑∞
i=0 ait

i

is given by:

[
L

M

]
=

PL(t)

QM (t)
=
p0 + p1t+ · · ·+ pLt

L

1 + q1t+ · · ·+ qM tM
. (3)

The two polynomials in the numerator and denomina-
tor of (4) have no common factor. This means that the
formal power series

y(t) =
PL(t)

QM (t)
+O(tL+M+1).

In this case Padé approximate [L/M ] is unique deter-
mined.

In this paper, we applied Laplace transform and
Adomian polynomials to solve nonlinear integro-
differential equation of fractional order.

The paper organized as follows: In section 2, we
introduce some necessary definitions and properties of
the fractional calculus theory and Laplace transform.
In section 3, we construct our method to approximate
the solution of the fractional integro-differential equa-
tion (1) and (2). Numerical examples are given in Sec-
tion 4.

2 Basic definitions

In this section, we give some definitions and proper-
ties of the fractional calculus and Laplace transform.

Definition 1 A real function f(t), t > 0, is said to
be in the space Cµ, µ ∈ R, if there exists a real
number p > µ, such that f(t) = tph1(t), where
f1(t) ∈ C(0,∞), and it is said to be in space Cn

µ

if and only if f (n) ∈ Cµ, n ∈ N.

Definition 2 The Riemann-Liouville fractional inte-
gral operator of order α > 0, of a function f ∈
Cµ, µ ≥ −1, is defined as

Jαf(t) =
1

Γ (α)

∫ t

0
(t− s)α−1f(s)ds, α > 0

J0f(t) =f(t).

Some properties of the operator Jα, are as follows:
For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ ≥ −1

JαJβf(t) = Jα+βf(t),

JαJβf(t) = JβJαf(t),

Jαtγ =
Γ (γ + 1)

Γ (α+ γ + 1)
tα+γ .

Definition 3 The fractional derivative Dα of f(t) in
the Caputo’s sense is defined as

Dαf(t) =
1

Γ (n− α)

∫ t

0
(t− τ)n−α−1f (n)(τ)d(τ),

(4)
for n− 1 < α ≤ n, n ∈ N, t > 0, f(t) ∈ Cn

−1.

Definition 4 The Laplace transform of a function
f(t), t > 0 is defined as

L [f(t)] = F (s) =

∫ +∞

0
e−stf(t)dt,

where s can be either real or complex.

The Laplace transform has several properties, as ex-
plained below:

Lemma 5 Laplace Transform of an Integral: If
F (s) = L [f(t)] then

L

[∫ t

0
f(τ)dτ

]
=
F (s)

s
. (5)
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Definition 6 Given two functions f and g, we define,
for any t > 0,

(f ∗ g)(t) =
∫ t

0
f(x)g(t− x)dx. (6)

The function f ∗ g is called the convolution of f and
g.

Theorem 7 The convolution theorem

L [f ∗ g] = L [f(t)] ·L [g(t)]. (7)

Theorem 8 The Laplace transform L [f(t)] of the
Caputo derivative is defined as [4]

L [Dαf(t)] = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), (8)

for n− 1 < α ≤ n.

3 Analysis of the method

3.1 The method for solution of Volterra inte-
gral equation

Firstly, we consider the fractional integro-differential
equation of Volterra type. According to Laplace de-
composition method we apply Laplace transform first
on both sides of (1)

L [Dαy(t)] =L [p(t)y(t)] + L [g(t)]

+ L

[
λ

∫ t

0
k(t, τ)F (y(τ))dτ

]
.

(9)

Using the differentiation property of Laplace trans-
form (8) we get

sαL [y(t)]− c = L [p(t)y(t)] + L [g(t)]

+ L

[
λ

∫ t

0
k(t, τ)F (y(τ))dτ

]
,

(10)

where c =
∑m−1

k=0 s
α−k−1y(k)(0). Thus, the given

equation is equivalent to

L [y(t)] =
c

sα
+

1

sα
L [p(t)y(t)] +

1

sα
L [g(t)]

+
1

sα
L

[
λ

∫ t

0
k(t, τ)F (y(τ))dτ

]
.

(11)

The second step in Laplace decomposition method is
that we represent solution as an infinite series given
below

y(t) =

∞∑
n=0

yn. (12)

The nonlinear operator is decomposed as

Ny = F [(y(t)] =
∞∑
n=0

An(y) (13)

where An is the Adomian polynomials [26] of
y0, y1, y2, · · · , yn, · · · that are given by

An =
1

n!

dn

dλn

[
F (

∞∑
i=0

λiyi)

]
λ=0

, n = 0, 1, 2, · · · .

For the nonlinear function Ny = F (y) the first Ado-
mian polynomials are given by

A0 = F (y0),

A1 = y1F
(1)(y0),

A2 = y2F
1(y0) +

1

2!
y21F

(2)(y0),

A3 = y3F
(1)(y0) + y1y2F

(2)(y0) +
1

3!
y31F

(3)(y0),

...

An =

n∑
v=1

c(v, n)F (v)(y0).

The first index of c(v, n) is the order of derivatives
from 1 to n, and the second is the order of the Ado-
mian polynomial. The c(v, n) are products (or sums
of products) of v components of f whose subscripts
sum to n, divided by the factorial of the number of
repeated subscripts.

Substituting (12) and (13) into (11), we will get

L

[ ∞∑
n=0

yn

]
=

c

sα
+

1

sα
L [g(t)]

+
1

sα
L

[
p(t)

∞∑
n=0

yn

]

+
λ

sα
L

[∫ t

0
k(t, τ)

∞∑
n=0

An(y)dτ

]
.

(14)

Matching both sides of (14) yields the following iter-
ative algorithm:

L [y0] =
c

sα
+

1

sα
L [g(t)], (15)

L [y1] =
1

sα
L [p(t)y0]

+
1

sα
L

[
λ

∫ t

0
k(t, τ)A0(y)dτ

]
, (16)

L [y2] =
1

sα
L [p(t)y1]

+
1

sα
L

[
λ

∫ t

0
k(t, τ)A1(y)dτ

]
. (17)
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In general, the recursive relation is given by

L [yn+1] =
1

sα
L [p(t)yn]

+
1

sα
L

[
λ

∫ t

0
k(t, τ)An(y)dτ

]
.

(18)

Applying inverse Laplace transform to (15-18), so our
required recursive relation is given below

y0(t) = H(t), (19)

and

yn+1(t) = L −1

[
1

sα
L [p(t)yn]

]
+

L −1

[
1

sα
L

[
λ

∫ t

0
k(t, τ)An(y)dτ

]]
,

(20)

where H(t) is a function that arises from the source
term and the prescribed initial conditions. The initial
solution is important, the choice of (19) as the initial
solution always leads to noise oscillation during the
iteration procedure. The modified Laplace decompo-
sition method [27] suggests that the functionH(t) de-
fined above in (19) be decomposed into two parts:

H(t) = H1(t) +H2(t).

Instead of iteration procedure (19) and (20), we sug-
gest the following modification

y0(t) = H1(t), (21)

y1(t) = H2(t) + L −1

[
1

sα
L [p(t)y0]

]
+

L −1

[
1

sα
L

[
λ

∫ t

0
k(t, τ)A0(y)dτ

]]
, (22)

yn+1(t) = L −1

[
1

sα
L [p(t)yn]

]
+

L −1

[
1

sα
L

[
λ

∫ t

0
k(t, τ)An(y)dτ

]]
. (23)

The solution through the modified Laplace decompo-
sition method high depend on the choice of H1(t) and
H2(t). We will show how to suitably choose H1(t)
and H2(t) by examples.

3.2 The method for solution of Fredholm in-
tegral equation

Secondly, we consider the nonlinear Fredholm
integro-differential equation of fractional order. We
apply the Laplace transform to both sides of (2)

L [Dαy(t)] = L [p(t)y(t)] + L [g(t)]

+ L

[
λ

∫ 1

0
k(t, τ)F (y(τ))dτ

]
.

(24)

Using the differentiation property of Laplace trans-
form we can get

sαL [y(t)]− c = L [p(t)y(t)] + L [g(t)]

+ L

[
λ

∫ 1

0
k(t, τ)F (y(τ))dτ

]
,

(25)

where c =
∑m−1

k=0 s
α−k−1y(k)(0), and

L [y(t)] =
c

sα
+

1

sα
L [p(t)y(t)] +

1

sα
L [g(t)]

+
1

sα
L

[
λ

∫ 1

0
k(t, τ)F (y(τ))dτ

]
.

(26)

In the same way, we represent solution as an infinite
series given below

y(t) =
∞∑
n=0

yn. (27)

The nonlinear operator is decomposed as

Ny = F [(y(t)] =
∞∑
n=0

An(y) (28)

Substituting (27)and (28) into (26), we can obtain

L

[ ∞∑
n=0

yn

]
=
c

sα
+

1

sα
L [g(t)]

+
1

sα
L

[
p(t)

∞∑
n=0

yn

]

+
1

sα
L

[
λ

∫ 1

0
k(t, τ)

∞∑
n=0

An(y)dτ

]
.

(29)

Matching both sides of (29) yields the following iter-
ative algorithm:

L [y0] =
c

sα
+

1

sα
L [g(t)], (30)

L [y1] =
1

sα
L [p(t)y0]

+
1

sα
L

[
λ

∫ 1

0
k(t, τ)A0(y)dτ

]
, (31)

L [y2] =
1

sα
L [p(t)y1]

+
1

sα
L

[
λ

∫ 1

0
k(t, τ)A1(y)dτ

]
. (32)
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In general, the recursive relation is given by

L [yn+1] =
1

sα
L [p(t)yn]

+
1

sα
L

[
λ

∫ t

0
k(t, τ)An(y)dτ

]
. (33)

Applying inverse Laplace transform to (30-33),
so our required recursive relation is given below

y0(t) = H(t), (34)

yn+1(t) = L −1

[
1

sα
L [p(t)yn]

]
+

L −1

[
1

sα
L

[
λ

∫ 1

0
k(t, τ)An(y)dτ

]]
. (35)

The functionH(t) defined in (34) can be decomposed
into two parts

H(t) = H1(t) +H2(t).

So, the modified recursion relation is obtained

y0(t) = H1(t),

y1(t) = H2(t) + L −1

[
1

sα
L [p(t)y0]

]
+

L −1

[
1

sα
L

[
λ

∫ 1

0
k(t, τ)A0(y)dτ

]]
,

yn+1(t) = L −1

[
1

sα
L [p(t)yn]

]
+

L −1

[
1

sα
L

[
λ

∫ 1

0
k(t, τ)An(y)dτ

]]
.

4 Numerical examples

In order to show the effectiveness of the Laplace de-
composition method for solving integro-differential
equations of fractional order, we present some exam-
ples. All the results are calculated by using the sym-
bolic calculus software Mathematica.

Example 1 Consider the following linear fractional
Volterra integro-differential equation [12]:

D3/4y(t) =
6t9/4

Γ (13/4)
+

(
−t2et

5

)
y(t)

+

∫ t

0
etτy(τ)dτ

(36)

with the initial condition

y(0) = 0 (37)

and the the exact solution is y(t) = t3. First, we apply
the Laplace transform to both sides of (36)

L [D3/4y(t)] =L

[
6t9/4

Γ (13/4)

]
+ L

[(
−t2et

5

)
y(t)

]
+ L

[∫ t

0
etτy(τ)dτ

]
Using the property of Laplace transform and the initial
conditions (37), we get

s
3
4 L [y(t)] =L

[
6t9/4

Γ (13/4)

]
+ L

[(
−t2et

5

)
y(t)

]
+ L

[∫ t

0
etτy(τ)dτ

]
and

L [y(t)] =
1

s3/4

{
L

[
6t9/4

Γ (13/4)

]
+ L

[(
−t2et

5

)
y(t)

]

+ L

[∫ t

0
etτy(τ)dτ

]}
.

Substituting (12) and (13) into above equation, we
have

L

[ ∞∑
n=0

yn

]
=

1

s3/4

{
L

[
6t9/4

Γ (13/4)

]

+ L

[(
−t2et

5

) ∞∑
n=0

yn

]

+ L

[∫ t

0
etτ

∞∑
n=0

yn(τ)dτ

]}
.

(38)

Match both side of (38), we have the following rela-
tion:

L [y0] =
1

s3/4
L

[
6t9/4

Γ (13/4)

]
,

L [y1] =
1

s3/4
L

[(
−t2et

5

)
y0

]
+

1

s3/4
L

[∫ t

0
etτy0(τ)dτ

]
,

L [yn+1] =
1

s3/4
L

[(
−t2et

5

)
yn

]
+

1

s3/4
L

[∫ t

0
etτyn(τ)dτ

]
.
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Applying inverse Laplace transform to above equa-
tions we get

y0 = t3,

y1 = L −1

[
1

s3/4
L

[(
−t2et

5

)
t3
]]

+ L −1

[
1

s3/4
L

[∫ t

0
etτ · τ3dτ

]]
= 0,

yn+1 = 0.

Therefore, the solution is obtained to be

y(t) =
∞∑
n=0

yn = t3.

The results are better than the results of [12].

Example 2 Consider the following nonlinear Volterra
integro-differential equation with a difference kernel
[15]

D
6
5 y(t) =

5

2Γ (4/5)
t
4
5 − t9

252
+

∫ t

0
(t−τ)2[y(τ)]3dτ,

(39)
for 0 ≤ t < 1 and with the initial condition

y(0) = y′(0) = 0 (40)

Applying the Laplace transform to both sides of (39)
and using the initial conditions we obtain

s
6
5 L [y(t)] =L

[
5

2Γ (4/5)
t
4
5 − t9

252

]
+ L

[∫ t

0
(t− τ)2[y(τ)]3dτ

]
.

Applying convolution theorem (8), we arrive at

s
6
5 L [y(t)] =L

[
5

2Γ (4/5)
t
4
5 − t9

252

]
+ L [t2] ·L

[
y(t)3

]
.

Hence

L [y(t)] =
2

s3
−1440 1

s56/5
+

2

s21/5
·L
[
y(t)3

]
. (41)

Substituting (12) and (13) into (41) leads to

L

[ ∞∑
n=0

yn

]
=

2

s3
−1440 1

s56/5
+

2

s21/5
·L

[ ∞∑
n=0

An

]
.

So we have following relation:

L [y0] =
2

s3
, (42)

L [y1] = 1440
−1
s56/5

+
2

s21/5
·L

[ ∞∑
n=0

A0

]
, (43)

L [yn+1] =
2

s21/5
·L

[ ∞∑
n=0

An

]
, n ≥ 1. (44)

Taking the inverse Laplace transform of both sides of
(42,43), and using the recursive relation (44) gives

y0 = t2,

y1 = 0,

...

yn+1 = 0.

Therefore, the solution is obtained to be

y(t) =

∞∑
n=0

yn = t2,

which is the exact solution.

Example 3 Consider the following Volterra integro-
differential equation of fractional order

Dαy(t) = 1 +

∫ t

0
y′(τ)y(τ)dτ, (45)

for 0 ≤ t < 1, 0 < α ≤ 1 and with the initial con-
dition y(0) = 0. Applying the Laplace transform to
both sides of (45) gives

L [Dαy(t)] = L [1] + L

[∫ t

0
y′(τ)y(τ)dτ

]
,

so that

sαL [y(t)] =
1

s
+ L

[∫ t

0
y′(τ)y(τ)dτ

]
,

or equivalently

L [y(t)] =
1

sα+1
+

1

sα
L

[∫ t

0
y′(τ)y(τ)dτ

]
.

Substituting the series assumption for y(t) and the
Adomian polynomials for y′y as given above in (12)
and (13) respectively, we obtain

L

[ ∞∑
n=0

yn

]
=

1

sα+1
+

1

sα
L

[∫ t

0

∞∑
n=0

Andτ

]
.
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So we can get the following relation:

L [y0] =
1

sα+1
, (46)

L [yn+1] =
1

sα
L

[∫ t

0
Andτ

]
, n ≥ 0. (47)

Taking the inverse Laplace transform of both sides of
(46) and (47) gives

y0 =
tα

Γ (1 + α)

yn = L −1

[
1

sα
L

[∫ t

0
An−1dτ

]]
, n ≥ 1

The general form of the approximation y(t) is given
by

y(t) =
n∑

k=0

Ckt
(2k+1)α, (48)

where the coefficients are given by

C0 =
1

Γ (1 + α)
,

C1 =C0C0α
Γ (2α)

Γ (1 + 3α)
,

C2 =(C0C13α+ C0C1α)
Γ (4α)

Γ (1 + 5α)
,

C3 =(C0C25α+ C1C13α+ C2C0α)
Γ (6α)

Γ (1 + 7α)
,

...

Cn =(C0Cn(2n− 1)α+ C1Cn−1(2n− 2)α+ · · ·

+ C0Cnα)
Γ (2nα)

Γ (1 + (2n+ 1)α)
.

To consider the behavior of solution of solution for
different value of α, we will take advantage of the for-
mula (48) available for 0 < α ≤ 1, and consider the
following two special cases: First order case: Setting
α = 1 in (48), we obtain the approximate solution in
a series form as

y(t) ≈ t+1

6
t3+

1

30
t5+

17

2520
t7+

29

22680
t9+

431

2494800
t11.

The [5/5] Padé approximate gives

y(t) ≈
[
5

5

]
=
−139/3780t5 + 19/18t3 + t

1 + 8/9t2 − 55/252t4
.

A comparison between the exact and the approximate
solutions at 10 points is demonstrated for n = 5 in Ta-
ble1. From Table1, it can be found that the obtained

approximate solutions are very close to the exact so-
lution.

Fractional order case: In this case we will exam-
ine the equation (46). Setting α = 1/2 and n = 5

y(t) ≈1.1284t1/2 + 0.9578t3/2 + 0.6504t5/2

+ 0.6151t7/2 + 0.6039t9/2 + 0.8494t11/2.

For simplicity, let t1/2 = x then,

y(x) =1.1284x+ 0.9578x3 + 0.6504x5 + 0.6151x7

+ 0.6039x9 + 0.8494x11.

Calculating the [5/5] Padé approximate and recalling
that x = t1/2 , we get

y(t) ≈ −0.2798t
5/2 − 0.2529t3/2 + 1.1283t1/2

1− 1.0729t+ 0.0863t2

Similarly, we can get the results for α = 1/3, 1/4.
The obtained numerical results for α = 1/2, 1/3, 1/4
and α = 1 are summarized in Figure1. The compar-
isons how that as α → 1, the approximate solutions
tend to y(t) =

√
2tan(

√
2t/2), which is the exact so-

lution of the equation in the case of α = 1.

Table 1: The exact and approximate solutions of Ex-
ample 3(α = 1)

t Exact solution Numerical solution Absolute error
0 0 0 0

0.1 1.001670e-001 1.001670e-001 8.7624e-014
0.2 2.013440e-001 2.013440e-001 4.4005e-011
0.3 3.045825e-001 3.045825e-001 1.6426e-009
0.4 4.110194e-001 4.110194e-001 2.1086e-008
0.5 5.219305e-001 5.219303e-001 1.5085e-007
0.6 6.387957e-001 6.387949e-001 7.4741e-007
0.7 7.633858e-001 7.633829e-001 2.8841e-006
0.8 8.978815e-001 8.978722e-001 9.3090e-006
0.9 1.045043e+000 1.045016e+000 2.6341e-005

Example 4 Consider the nonlinear Fredholm frac-
tional integro-differential equation [16, 28]

D
5
3 y(t) = g(t) +

∫ 1

0
(x+ t)2[y(x)]3dx, (49)

where g(t) = 6
Γ (1/3)

3
√
t− t2/7− t/4− 1/9, with the

initial condition y′(0) = y(0) = 0. First, we apply
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Figure 1: Comparison of approximate solution for
α = 1/4, 1/3, 1/2, 1.

Laplace transform and its properties to both sides of
(49), we have

L [D
5
3 y(t)] = L [g(t)]+L

[∫ 1

0
(x+ t)2[y(x)]3dx

]
.

The initial conditions give

s
5
3 L [y(t)] = L [g(t)]+L

[∫ 1

0
(x+ t)2[y(x)]3dx

]
.

Assuming an infinite series solution of the form (27),
we have

L

[ ∞∑
n=0

yn

]
=

2

s3
− 1

7s143
− 1

4s
11
3

− 1

9s
8
3

+
1

s
5
3

L

[∫ 1

0
(x+ t)2

∞∑
n=0

Andx

]
,

(50)

where the nonlinear operator F (y) = y3 is decom-
posed as in terms of the Adomian polynomials. The
first few Adomian polynomials are

A0 = y30,

A1 = 3y20y1,

A2 = 3y20y2 + 3y0y
2
1,

A3 = 2y20y3 + 6y0y1y2 + y33,

· · · .

Matching both sides of (50), the components of y(t)

can be defined as follows:

L [y0] =
2

s3
, (51)

L [y1] =−
1

7s
14
3

− 1

4s
11
3

− 1

9s
8
3

+
1

s
5
3

L

[∫ 1

0
(x+ t)2

∞∑
n=0

A0dx

]
, (52)

...

L [yn] =
1

s
5
3

L

[∫ 1

0
(x+ t)2

∞∑
n=0

An−1dx

]
. (53)

Taking the inverse Laplace transform of (51) gives

y0 = t2.

Applying that A0 = y30 , we obtain

L [y1] =−
1

7s
14
3

− 1

4s
11
3

− 1

9s
8
3

+
1

s
5
3

L

[∫ 1

0
(x+ t)2 · x6dx

]
.

Taking the inverse Laplace transform of both sides of
the above equation gives

y1 = 0.

So we can get

yn = 0, n > 1.

Therefore, the solution is obtained to be

y(t) =
∞∑
n=0

yn = t2,

which is the exact solution.

Example 5 Consider the nonlinear Fredholm frac-
tional integro-differential equation[11, 16, 28]

Dαy(t) = 1− 1

4
t+

∫ 1

0
xt[y(x)]2dx, (54)

for 0 < α ≤ 1 and with the initial condition y(0) = 0.
Applying the Laplace transform to both sides of (54)
gives

L [Dαy(t)] = L

[
1− 1

4
t

]
+L

[∫ 1

0
xt[y(x)]2dx

]
,

so that

L [y(t)] =
1

sα+1
− 1

4sα+2
+

1

sα
L

[∫ 1

0
xt[y(x)]2dx

]
.
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Assuming an infinite series solution of the form (27),
we have

L

[ ∞∑
n=0

yn

]
=

1

sα+1
− 1

4sα+2
+

1

sα
L

[∫ 1

0
xt

∞∑
n=0

Andx

]
,

where the nonlinear operator F (y) = y2 is decom-
posed as in terms of the Adomian polynomials. The
first few Adomian polynomials are

A0 = y20,

A1 = 2y0y1,

A2 = 2y0y2 + y21,

A3 = 2y0y3 + 2y1y2,

A4 = 2y0y4 + y22 + 2y1y3,

A5 = 2y0y5 + 2y1y4 + 2y32,

A6 = 2y0y6 + 2y1y5 + 2y2y4 + y23,

· · ·

So we can get the following relation:

L [y0] =
1

sα+1
, (55)

L [y1] =−
1

4sα+2

+
1

sα
L

[∫ 1

0
xt

∞∑
n=0

A1dx

]
, (56)

L [yn] =
1

sα
L

[∫ 1

0
xt

∞∑
n=0

Andx

]
, n ≥ 2. (57)

The inverse Laplace transform applied to (55-57) re-
sults

y0 =
tα

Γ (1 + α)
,

y1 =−
t1+α

4Γ (2 + α)

+ L −1

[
1

sα
L

[∫ 1

0
xtA0dx

]]
,

yn =L −1

[
1

sα
L

[∫ 1

0
xtAn−1dx

]]
, n ≥ 2.

When α = 1 in (54) we can get

y0 =t,

y1 =−
t2

4Γ (3)
+ L −1

[
1

s
L

[∫ 1

0
t · x3dx

]]
= 0.

Similarly, we can obtain

yn = 0, n > 1.

So the solution is y(t) =
∑∞

n=0 yn = t which is the
exact solution.

When α = 1/2, we can obtain

y0 =1.1284t1/2,

y1 =0.1312t3/2,

y2 =0.0557t3/2,

y3 =0.0262t3/2,

....

Similarly, we can get the results for α = 1/3, 1/4.
The obtained numerical results for α = 1/2, 1/3, 1/4
and α = 1 are summarized in Figure 2. From Figure
2, we can see the numerical solution is in very good
agreement with the wavelet methods in [11, 20].
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Figure 2: The approximate solution of Example4 for
α = 1/4, 1/3, 1/2, 1.

5 Conclusion
In this paper, Laplace decomposition method has been
successfully applied to finding the approximate solu-
tion of nonlinear fractional integro-differential equa-
tion. The method is very powerful and efficient in
finding analytical as well as numerical solutions for
wide classes of linear and nonlinear fractional integro-
differential equations. It provides more realistic series
solutions that converge very rapidly in real physical
problems. Finally, the behavior of the solution can be
formally determined by using the Padé approximate.

The proposed method can be applied for other
nonlinear fractional differential equations, systems of
differential and integral equation.
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